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Multiresolution analysis of vibration signals acquired from locomotive Diesel  

engine for classification of engine states basing on signal statistical parameters 
 

The paper presents a method of classification of locomotive Diesel engine states basing on vibration signals taken from an engine 

body and using chosen statistical parameters calculated for the original signal and it wavelet multiresolution components. The 

researches presented in the paper concern estimation of an engine states before and after a general repair. The target application of the 

presented researches is an on-line diagnostic system which can complement standard OBD systems. To this purpose the applied methods 

should not base on complex analysis of some spectral, time-frequency or scalogram plots but rather on choosing single diagnostic 

parameters which are suitable for the fast on-line diagnostic. The results have showed the significant difference in distinguishing of 

engine work before and after a general repair using some chosen statistical parameters applied to vibration signals. 
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1. Introduction 
A combustion engine is an example of a mechanical de-

vice which can run down. The engine diagnosis needs esti-

mation of the technical state of an engine during it exploita-

tion. Together with engines used in a car transport the loco-

motive combustion engines are nowadays also an important 

source of pollution. To reduce air pollution for passenger cars 

the OBD (on board diagnostic) norms and systems were 

introduced. The rail area is also partially regulated with sev-

eral regulations considering limits on emission of combustion 

gases (for example, cart UIC 623 1-2-3 in Europe). But all 

the time there are no obligatory regulations for systems 

monitoring the emission critical damages that might play a 

similar role to that of the OBD for cars. Anyway, the coming 

years will show a tightening of norms and regulations regard-

ing combustion gases emission regarding vehicles with 

heavy diesel engines like combustion locomotives. It is this 

imminent perspective that gives an impulse to research new 

detection methods that would be applicable in diesel locomo-

tives and which base on vibration analysis [1].  

The paper presents some researches on classification of 

different states of Diesel locomotive engine basing on vibra-

tion signals taken from an engine body before and after a 

repair. In the area of vibration signals analysis many special-

ized methods can be found. It is enough to mention about 

FFT spectrum, nonlinear analysis, short-time analysis and 

wavelets (see e.g. [2-9]). The results presented in the paper 

covers the application of multiresolution wavelet analysis 

into diagnostic of rail vehicle combustion engine with appli-

cation of some chosen statistical parameters applied to the 

original signal and it wavelet multiresolution components.  

The proposition of engine diagnostic presented in the 

paper bases on the indication of some diagnostic parameters 

which can be useful to distinguish engine different states by 

signal processing methods without considering details of 

mechanical engine processes. In this on-line analysis the 

applied methods cannot base on complex analysis of spec-

tral, time-frequency or scalogram plots but they need 

choosing single diagnostic parameter which can be applied 

in a fast on-line diagnostic. 

The results presented in the paper showed the signifi-

cant difference in distinguishing of engine work before and 

after a repair using some of chosen shape parameters ap-

plied to vibration signals taken from an engine. 

2. Multiresolution wavelet analysis 
Wavelet analysis [7, 10] is nowadays a known signal 

processing method applied in broad range of problems and 

disciplines. Wavelets have also found an application in the 

area of analysis of broad class of mechanical signals (also 

vibration signals) for diagnostic aim [5, 6, 11–13].  

In continuous wavelet transformation CWT [7, 10] the 

set of wavelets which create orthonormal base can be ob-

tained by transformations of one special mother wavelet. In 

comparison with Fourier base functions the wavelets series 

is created by scaling (stretching or compressing) and by 

translation, while the Fourier base function are only scaled. 

Wavelets are better from traditional Fourier approach dur-

ing analysis of signals which contain discontinuities and 

sharp non-periodic peaks. During processing of unsteady 

signals the Fourier analysis loses all information about 

localization in time of the given frequency components. 

The use of CWT while all calculations are done for all 

possible scales and translations gives the big amount of 

data. For this reason in practice the Discrete Wavelet Trans-

formation DWT is used [7, 10]. In DWT a signal is trans-

formed to discrete scales and discrete translations what 

gives a data reduction. What is worth to underline each 

DWT transformation can be interpreted as a special case of 

a filtering function [7, 10].  

In effect using DWT transformation to the original sig-

nal S can make it decomposition into two terms: high fre-

quency approximation term and low frequency approxima-

tion term. This operation can be repeated. For example, the 

structure of multiresolution decomposition of an original 

signal S on the level 5 can be described as S = A5 + D5 + D4 

+ D3 + D2 + D1 (see Fig. 1), where D represents low fre-

quency component decomposed with a high scale and A 

high frequency components decomposed with a low scale.  
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Fig. 1. The exemplary tree structure of multiresolution decomposition on 

level 5 

3. Measurements 
All experiments were done on Diesel locomotives ST44. 

The construction of ST44 locomotives is simple and a ser-

vice is easy to performance. They have easiness of start in 

any circumstances and a big force. The ST44 locomotive 

was a typical combustion traction vehicle for railway in 

Poland 1949–1991. It appeared irreplaceable in winter 

conditions. Unfortunately it has also many disadvantages 

like a big fuel consumption, little fuel tank, high emission 

of combustion gases and high level of noise. The measure-

ments were performed on two ST44 locomotives – number 

2045 and 2061. The main calculations were done for data 

registered on both locomotives. The paper presents also 

some calculation performed for each locomotive separately. 

The number of performed registrations was limited by 

complexity of measurements and first of all by the general 

costs of researches.  

The examinations were focused on Diesel engine 14D40 

no 8849. The measurements were done under loading (on 

water resistor) for correspondingly adjustment power in 

determinate measurement points [1, 14]. The researches 

were performing basing on comparison of vibration signals 

recorded from an engine before and after the revision repair 

in a diagnostic station. Periodic repair consisted in full 

service of damaged parts and in replacement of damaged or 

wearing elements [14].  

The acceleration measurements before repair of a Diesel 

engine were done by using acceleration sensors EGCS 

Entran Devices of the range ± 5 g. The signal was regis-

tered by cart PCL-818HD ADVANTECH with the sam-

pling frequency fHz = 1004.0161 Hz/channel. The meas-

urement after repair were done using the same sensors 

EGCS and new sensors PCB PIEZOELECTRONICS 

393B04 where the signal was amplify by 3-channel signal 

conditioning amplifier and next registered using analogue 

to digital cart.  

The sensors were mounted on an engine body in places 

which correspond to bearing sites of engine crankshaft (see 

Fig. 2). Each measurement points registered acceleration in 

vertical direction and transverse horizontal direction [14]. 

The measurements before the repair were performed under 

load on water recoil in the seven measurement points 

mounted on an engine body near of engine crankshaft bear-

ing. In each measuring point acceleration was registered in 

two directions: vertical and horizontal transversal. The 

measurements after repair were also done under load on 

water recoil but in six points of sensors mounted on engine 

body. In this case acceleration was registered in the same 

two directions: vertical (Entran sensors) and horizontal 

transversal (PCB sensors). 

 

 

Fig. 2. Sensors mounted on an engine body 

4. Data analysis 
Taking into account all configurations and all settings 

for horizontal case the full measurements gives finally 180 

signals registered before and 120 signals registered after. 

Each of these signals was processing to find it multiresolu-

tion components. The calculations were performed in 

MATLAB for Daubechies wavelet rank 5 and multiresolu-

tion decomposition at 5-th level. The type of wavelet was 

chosen basing on literature remarks and some own experi-

ments. From the point of view of diagnostic aims the 5 

level of decomposition seems quite enough, because the 

analysis is usually performed on-line and this needs not 

very time consuming calculations.  

In the considerations an original signal S after the de-

composition consisted of 6 sub signals S = A5 + D5 + D4 + 

D3 + D2 + D1, where D5 is a low frequency component 

decomposed with a high scale and successive D5, D4, D3, 

D2, D1 are high frequency components decomposed with a 

small scale.  

The example of signals and it multiresolution compo-

nents are presented in Figs. 3-4. For each signal and its 

components, the following parameters were calculated:   
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A     B 

Fig. 3. Exemplary vibration signal before (A) and after (B) an engine 

repair for horizontal transversal registration (the x-axis units are in number 

of samples; the y-axis units are in 10 m/s2 ≈ g (A) and 1 m/s2 (B)) 
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Fig. 4. Multiresolution components of signal A from Fig. 3 (before a 

repair) (the x-axis units are in number of samples; the y-axis units are in 10 

m/s2 ≈ g) 

5. Results  
The general results for signal S and decomposition compo-

nents A5, D1, D2, D3, D4 and D5 were showed that the 

most interesting are results are for horizontal registration 

(see Table 1). The Table 1 presents the averaged values of 

parameters X1, X2, X3, X4 and X5 calculated for all signal 

cases (180 signals registered before and 120 signals regis-

tered after). Generally all parameters (except “Mean”) for 

horizontal registration show the increase of parameter value 

after the repair. The values of parameters after a repair are 

higher in comparison with values before a repair, but only 

for horizontal registration. It is worth to underline that the 

values “before” represent a worn-out engine in a general 

bad state while values “after” represent the repaired engine 

in better general state. 

The next step of the researches was a creation of a sim-

ple classifier to test if the chosen parameters can play a role 

of diagnostic parameters distinguishing engine state before 

and after the repair. Basing on the above observations 

above the three parameters: X2 (Variance VAR), X3 (Root-

Mean Square RMS) and X4 (Mean From Absolute Values 

MAV) for components S, D1 and D4 were chosen to build 

a classifier. It needs to define a threshold to distinguish the 

states of right and fault work of an engine and at the begin-

ning the simplest way was taken into account. 

Generally all parameters (except “Mean”) for horizontal 

registration show the increase of parameter value after the 

repair. It is worth to underline that the values “before” rep-

resent a worn-out engine in a general bad state while values 

“after” represent the repaired engine in better general state. 

The next step of the researches was a creation of a simple 

classifier to test if the chosen parameters can play a role of 

diagnostic parameters. Basing on the above observations 

the three parameters: X2 (Variance VAR), X3 (Root-Mean 

Square RMS) and X4 (Mean From Absolute Values MAV)   

 
Table 1. The full results from two locomotives for horizontal registrations 

 X1 X2 X3 X4 X5 

S 
Before 0.054 3.298 1.733 1.547 1.257 

After 0.075 65.853 72.862 8.727 5.499 

A5 
Before 0.054 0.009 0.160 0.145 1.142 

After 0.075 2.268 1.879 1.172 1.265 

D1 
Before -0.0000002 1.227 1.032 0.800 1.291 

After 0.000004 33.179 32.276 5.844 3.799 

D2 
Before -0.0000005 1.114 0.987 0.767 1.291 

After -0.000001 21.074 28.197 4.801 3.491 

D3 
Before 0.000003 0.676 0.768 0.611 1.256 

After -0.0000005 8.109 9.955 2.954 2.390 

D4 
Before -0.000006 0.243 0.471 0.374 1.265 

After -0.00001 4.312 4.191 1.942 1.001 

D5 
Before -0.000002 0.029 0.164 0.133 1.239 

After 0.000009 2.048 1.747 1.145 1.238 

 
Table 2. The means and standard deviations of distribution of parameters X2, X3, and X4 calculated for the cases before and after 

 X2 X3 X3 

S 
Before 3.298 ±2.298 1.733 ±0.571 1.547 ±0.513 

After 65.853 ±93.607 72.862 ±129.779 8.727 ±5.307 

D1 
Before 1.227 ±1.079 1.032 ±0.404 0.800 ±0.313 

After 33.179 ±43.655 32.276 ±52.626 5.844 ±3.425 

D4 
Before 0.243 ±0.142 0.471 ±0.144 0.374 ±0.119 

After 4.312 ±5.348 4.191 ±4.557 1.942 ±1.114 

 
Table 3. The results of classification for signal S for gauss thresholds separately for locomotive 2045 and 2061 

 X2 

Number (percentage) of classification as a 

X3 

Number (percentage) of classification as a 

X4 

Number (percentage) of classification as a 

Proper Improper Proper Improper Proper Improper 

After    both 

           2045 

           2061 

95 (79%) 

60 (100%) 

40 (67%) 

25 (21%) 

0 (0%) 

20 (33%) 

110 (92%) 

49 (82%) 

50 (83%) 

10 (8%) 

11 (18%) 

10 (17%) 

110 (92%) 

60 (100%) 

50 (83%) 

10 (8%) 

0 (0%) 

10 (17%) 

Before both 

           2045 

           2061 

11 (6%) 

6 (7%) 

13 (14%) 

169 (94%) 

84 (93%) 

77 (86%) 

4 (2%) 

0 (0%) 

0 (0%) 

176 (98%) 

90 (100%) 

90 (100%) 

16 (9%) 

6 (7%) 

4 (4%) 

164 (91%) 

84 (93%) 

86 (96%) 
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Table 4. The results of classification for signal component D1 for gauss thresholds separately for locomotive 2045 and 2061 

X2 

Number (percentage) of classification as a 

X3 

Number (percentage) of classification as a 

X4 

Number (percentage) of classification as a 

Proper Improper Proper Improper Proper Improper 

After   both 

            2045 

            2061 

108 (9%) 

60 (100%) 

41 (68%) 

12 (10%) 

0 (0%) 

19 (32%) 

110 (92%) 

60 (100%) 

50 (83%) 

10 (8%) 

0 (0%) 

10 (17%) 

110 (92%) 

60 (100%) 

50 (83%) 

10 (8%) 

0 (0%) 

10 (17%) 

Before both 

            2045 

            2061 

13 (7%) 

6 (0%) 

0 (0%) 

167 (93%) 

84 (93%) 

90 (100%) 

11 (6%) 

0 (0%) 

2 (2%) 

169 (94%) 

90 (100%) 

88 (98%) 

12 (7%) 

9 (10%) 

5 (6%) 

167 (93%) 

81 (90%) 

85 (94%) 

 
Table 5. The results of classification for signal component D4 for gauss thresholds separately for locomotive 2045 and 2061 

X2 

Number (percentage) of classification as a 

X3 

Number (percentage) of classification as a 

X4 

Number (percentage) of classification as a 

Proper Improper Proper Improper Proper Improper 

After   both 

           2045 

           2061 

110 (92%) 

60 (100%) 

50 (83%) 

10 (8%) 

0 (0%) 

10 (17%) 

110 (92%) 

60 (100%) 

50 (83%) 

10 (8%) 

0 (0%) 

10 (17%) 

110 (92%) 

60 (100%) 

50 (83%) 

10 (8%) 

0 (0%) 

10 (17%) 

Before both 

           2045 

           2061 

9 (5%) 

1 (1%) 

7 (8%) 

171 (95%) 

89 (99%) 

83 (92%) 

7 (4%) 

46 (51%) 

5 (6%) 

173 (96%) 

44 (49%) 

85 (94%) 

6 (3%) 

1 (1%) 

6 (7%) 

174 (97%) 

89 (99%) 

84 (93%) 

 

for components S, D1 and D4 were chosen to build a classi-

fier. It needs to define a threshold to distinguish the states 

of right and fault work of an engine. 

At the beginning the simplest way was taken into ac-

count. The threshold was considered as a center between 

the parameter averaged value for the case before and the 

case after the repair. The results for this kind of thresholds 

appeared not perfect. But analyzing the original data more 

detailed it was noticed that resolutions of values for the 

state “after” was concentrated very broad in comparison 

with the values for the state “before” (see Table 2). Taking 

the “center” threshold gives a bad classification for signals 

before but better for signals after. 

It can be seen from Table 7 that the standard deviations of 

parameters are approximately ten times bigger for the set of 

data “before”. From the classifier construction point of view, it 

means that the threshold cannot be taken as a center of distance 

between before and after cases. To find the right threshold the 

Gaussian distribution was taken into consideration (find out 

that a mean and a standard deviation are enough to define a 

Gaussian distribution). This way a threshold should be define 

as a value, which is a coincidence point between two adjacent 

Gauss distributions, one for proper and the second for improp-

er case. In other words, the threshold is a solution of equation 

created by equate two Gauss distribution with different means 

and standard deviations  

                            G(x)µ2,σ2 = G(x)µ2,σ2                                (6) 

These kinds of thresholds are calling in the paper as “gauss” 

thresholds. The results of classification for gauss thresholds were 

better but they all the time not satisfactory. The problem was in 

the fact that the set of all signal data were recorded on two lo-

comotives but considered together. That’s way the calculations 

were repeated for each locomotive separately.  

Taking into account the center thresholds for each lo-

comotive separately and classify all cases as improper 

(while the value of a parameter is below threshold) or prop-

er (while the value of a parameter is above a threshold) 

separately for locomotive 2045 and 2061 give the results 

which are not satisfactory the same as for the analysis of 

data from two locomotives jointly. Here also can be noticed 

that resolutions of values for the state after are concentrated 

very broad in comparison with the values for the state be-

fore. Taking into account the means and standard deviations 

of distribution of parameters X2, X3, and X4 calculated for 

the cases before and after for each locomotive separately 

the gauss threshold was using (threshold calculated basing 

on Gauss distributions). Considering gauss thresholds and 

classify all cases as improper (while the value of a parame-

ter is below a threshold) or proper (while the value of a 

parameter is above a threshold) separately for locomotive 

2045 and 2061 give the results of classification which are 

presented in Tables 3–5. These results are really the best 

and give a good perspective for using the above parameters 

and methods for classification of Diesel engine state.  

Find that for classification performed in the paper a case 

was classified as improper while a corresponding value was 

below threshold and as a proper while the corresponding 

value was above a threshold. The state “before” represents 

a worn-out engine in bad conditions while state “after” 

represents the repaired engine in better general conditions. 

It strictly means that the values of Variance X2, Root-Mean 

Square X3 and Mean From Absolute Values X4 of horizon-

tal signal S and of it multiresolution components D1 and 

D4 are higher for proper engine working. At the same time 

the above parameters before the repair have significantly 

lower values (sometimes 10 or even 100 times) of standard 

deviation in comparison with the values for the same pa-

rameters for the case after repair. The resolutions of values 

for the state “after” are concentrated very broad in compari-

son with the values for the state “before”. The bigger values 

of Variance, Root-Mean Square and Mean From Absolute 

Values show that the range of variability of the vibrations 

for repaired engine is higher. From practical point of view it 

seems that for the bigger values of the above parameters the 

engine is working “better”. The sensors mounted on an 

engine body registered vibration signals which represent the 

influence of many vibration processes taken place in an 

engine, like combustion processes and functioning of en-

gine parts. This is no way to distinguish between them and 

presented in the paper diagnostic base on the general indi-

cation of useful diagnostic parameters without finding the 



 

Multiresolution analysis of vibration signals acquired from locomotive Diesel engine… 

72 COMBUSTION ENGINES, 2017, 168(1) 

relation to real mechanical engine processes. We can just 

say that the “better” working of an engine corresponds to 

better combustion and better working of engine parts.  

6. Discussion 
The analysis presented in the paper was performed to dis-

tinguish between different engine states corresponding to 

engine state before and after a repair using signal processing 

methods. For this analysis three parameters were eventually 

selected: Variance, Root-Mean Square and Mean From Abso-

lute Values. The horizontal registration signals were chosen to 

analysis and in the calculations the original signal S and the 

two multiresolution components D1 and D4 were considered. 

The best results of classification were obtained for considering 

separately data from different locomotives. This shows that in 

this case the individual attributes of each signal can differ 

significantly for different signal source. In practice it means 

the classification and determination of thresholds should be 

performed separately for each locomotive engine. The even 

superficial analysis of the results is interesting and gives per-

spectives to practical application in combustion engine diag-

nostic. Although the results are very promising the great com-

plexity and variety of possible measurement schemas need 

more experiments and researches before practical application 

in an on-line OBD diagnostic system.  

 

Nomenclature 

14D40  engine type  

2045, 2061 locomotive numbers  

A1–A5  multiresolution high frequency components of S  

CWT  continuous wavelet transformation 

D1–D5  multiresolution low frequency components of S  

DWT  discrete wavelet transformation  

FFT  Fast Fourier Transformation 

M/X1  mean 

MAV/X4  mean from absolute values  

OBD  on board diagnostic 

RMS/X3  root-mean square 

S   original signal 

SC/X5  shape coefficient 

ST44  type of Diesel locomotive  

VAR/X2  variance  
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